# Pollution Prevention for Laboratories



## Procedural or Policy Change

- 1. Prepare and follow a waste management reduction policy for your lab.
- 2. Include pollution prevention in employee training, job descriptions and SOPs.
- 3. Incorporate manuals, such as the American Chemical Society "Less is Better" or "ACS Waste Management Manual for Lab Personnel" into training.
- 4. Create incentives for waste reduction.
- 5. Review procedures regularly for opportunities to reduce or eliminate materials and wastes.
- 6. When preparing a new protocol, consider its waste streams and strive to reduce or eliminate them. When researching a new or alternative procedure, consider the amount of wastes produced.
- 7. Polymerize epoxy waste into a safe solid.
- 8. Neutralize corrosive waters that do not contain metals at the lab bench, if so noted in the SOP for that process.
- 9. Deactivate highly reactive chemicals in the hood, if so noted in the SOP for that process.

### **Inventory Controls**

- 1. Centralize purchasing of chemicals through one person in the lab.
- 2. Submit updated hazardous materials data weekly.
- 3. Before purchasing a new chemical or chemical product, try to obtain chemicals needed from another lab or activity on Post (FREEBIES program through HITS).
- 4. Promptly flag all excess usable chemicals to your activity environmental coordinator or the Installation HAZMART for re-issue.
- 5. Purchase chemicals in the smallest quantities needed.
- 6. Follow first-in, first-out procedures.
- 7. When testing experimental products for private companies, limit donations to the amount needed for research. Return unused samples to company or vendor.
- 8. Limit chemical inventory in lab to a one-week supply. Obtain chemicals and chemical products only if you will use them within 6 months or before they will expire.
- 9. Dispose of items containing polychlorinated biphenyls according to RCRA requirements (AECs will assist with this).

# Process or Equipment Change

- 1. Consider the quantity and type of wastes produced when purchasing new equipment. Purchase equipment that produces less waste.
- 2. Use a metal oven thermometer instead of a mercury thermometer in ovens.
- 3. Use a digital thermometer where possible.
- 4. Substitute red liquid (alcohol) thermometers (range up to 150 degrees C) for mercury thermometers where possible.
- 5. Evaluate laboratory procedures for opportunities for the use of less hazardous reagents.
- 6. Consider using ozone treatment for parts cleaning.
- 7. Use digital photography and pixel ray whenever possible. If traditional, wet-processing photography and x-ray remain the only viable options, ensure that all spent fixer is processed for silver recovery.
- 8. Use HVLP paint guns, Laser Touch and MiniMax Cleaner for paint equipment.
- 9. Use digitized or automated equipment whenever possible to eliminate wastes from inaccuracy and error.
- 10. Scale down experiments producing hazardous waste wherever possible.
- 11. When solvent is used for cleaning purposes, use spent solvent for initial cleaning and fresh solvent for final cleaning.
- 12. Perform work in batches.

## Material Substitution

- 1. Use the least hazardous cleaning method for glassware. Use hot water and detergents, such as Alconox, Miro, or RBS35 on dirty equipment before using KOH/ethanol bath, acid bath or No Chromix where possible.
- 2. Eliminate the use of chromic acid all together where possible.
- 3. Do not use uranium and thorium compounds without prior approval from your organization's Radiation Protection Officer.
- 4. Review the use of highly toxic, reactive, carcinogenic or mutagenic materials to determine if safer alternatives are feasible.
- 5. Avoid the use of reagents containing: barium arsenic, cadmium, chromium, lead, mercury, selenium, and silver.
- 6. Seek alternatives to phenol extractions (e.g. small scale plasmid prep using no phenol may be found in Biotechnica, Vol. 9, No. 6, pp. 676-678).
- 7. Substitute stearic acid for acetamide in phase change and freezing point depression.
- 8. Substitute ethanol for formaldehyde in biological specimen storage.
- 9. Substitute limonene based extracts for xylene for histology uses.
- 10. Consider using solid phase extractions for organics.
- 11. Avoid the use of hazardous solvents. Try to find non-flammable, biodegradable substitutes. If hazardous solvents must be used, investigate redistillation to minimize disposal requirements.
- 12. Avoid the use of oxidizers.

#### Material Reuse

- 1. Examine your waste/excess chemicals to determine if there are other uses in your lab, neighboring labs, departments or other APG activities that might be able to use them.
- 2. Purchase compressed gas cylinders, including lecture bottles, only from manufacturers who will accept the empty cylinders back.
- 3. When solvent is required for cleaning purposes, use spent solvent for initial cleaning and fresh solvent for final cleaning.
- 4. Reuse acid mixtures for electropolishing.
- 5. Store and reuse developer in photo labs.
- 6. Evaluate other wastes for reclamation in labs. Discuss this with your AEC during your SAS inspections.

## Process Efficiency

- 1. When cleaning substrates or other materials by dipping, process multiple items at once.
- 2. Use smallest possible container for dipping or for holding photographic chemicals.
- 3. Use best geometry of substrate carriers to conserve chemicals.
- 4. Scale down experiments producing hazardous waste wherever possible (quarter scale testing, microchemistry).
- 5. Use pre-weighed or pre-measured reagent packets for labs where waste is high.
- 6. Include waste management as port of the testing protocols.